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Abstract

Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared.

The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overde-

termined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems

and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the

imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as

an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective

underground regions. Extensive numerical results are presented.
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1. Introduction

In this paper two methods for the solution of a 2-D inverse problem for the Helmholtz equation, with the

data originated by frequency sweeps, are presented and compared. An important common feature of both
methods is that the original inverse problem is reduced to a set of overdetermined boundary value problems

(BVPs) for PDE operators depending on the modulated frequency as a parameter. Because of the over-

determination, the normal solutions of these BVPs are sought. The solution of each of those BVPs via finite

differences leads to the solution of a large sparse matrix system. This is one significant difference between

the current approach and the majority of previous ones, in which full, rather than sparse matrices were

solved, due to the integral, rather than the differential form of the resulting equation for the linearized
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inverse problems, cf. [1,4–6]. Because of the resulting sparse positive definite matrix, it is a natural choice to

use the preconditioned conjugate gradient method (PCG) to solve it. A version of this method, adapted to

the specific problem, is developed here.

In the first algorithm, the H -method introduced for the first time here, the unknown perturbation term is

corrected from one iteration to the next, where the iterations are performed with respect to frequency, going

from the highest frequency (in the selected frequency band) to the lowest. Finally the perturbation term is

recovered at the lowest frequency. This approach is somewhat similar to the propagation–backpropagation

method of [20], see also [9]. However, in [20] different emitting angles were considered, unlike in our case of
varying frequency. In addition, a certain resulting matrix Cj was replaced by its asymptotic value in [20],

because of difficulties in its computation, whereas we calculate all matrices precisely. Interestingly, in [20] a

normal solution was also sought. In the second method, the p-method, the unknown coefficient is elimi-

nated from the original PDE by differentiation with respect to frequency. The result is an overdetermined

BVP for an integro-differential PDE with Volterra-like integrals with respect to frequency. This idea was

proposed and implemented by the authors in [16]. However, we also describe this idea in the current paper

(for the sake of reader�s convenience), as we want to compare the approach of [16] with the newer method,

which has certain advantages over the previous one.
In the PCG method, which is used to find the normal solutions in both of the above methods, the key

question involves the selection of a preconditioner. Here the preconditioner will be selected to be the exact

factorization of one of the original matrices using the method of nested dissection [12], but only for a small

number of frequencies. This selection has been found to work very well for nearby frequencies where it is an

excellent approximate inverse. In this approach an automatic algorithm for the near optimal choice of

frequency ranges over which the same preconditioner is used has been developed. The average number of

iterations of the conjugate gradient method for our final runs for both methods is about 4–5. Because the

factored matrix does not depend on the solution of the inverse problem, its factorization could be effectively
parallelized, but this expansion of the presented algorithm is not explored in this paper.

The idea of eliminating the unknown perturbation term using differentiation leading to a differential

form of the resulting system was explored in our earlier publications (see for example [15] or [19]), in which

inverse problems for parabolic equations were considered. This approach was called the Elliptic Systems

Method (ESM), because the Volterra-like integrals with respect to time were eliminated via a truncated

generalized Fourier series, leading to an overdetermined BVP of the fourth order for a coupled system of

elliptic equations, one for each Fourier coefficient. This approach proved to be successful for the accurate

locations of the targets, but the values of the unknown coefficients within those targets were imaged poorly.
In contrast, in this paper we continue the effort begun in [16] to develop a second generation of the ESM, in

which truncated generalized Fourier series are not used. The successful use of the new H -method here leads

to a deepened understanding of the ESM, in that the above differentiation which is a principal feature of the

p-method [16], is also shown to be unnecessary. In addition the requirement of the loss tangent assumption

(Section 2.1) is no longer required.

This paper is motivated by the authors interest in the development of new and effective methods for the

imaging of land mines using Ground Penetrating Radar (GPR). Thus, a simplified model of propagation of

the GPR signal is presented here. In particular, realistic ranges of parameters are used. The problem of the
imaging of land mines is considered as an 2-D inverse problem for the Helmholtz equation with Som-

merfeld boundary conditions. The two inverse algorithms developed here should be considered as a first

step towards this challenging imaging goal. In order to continue towards this goal, one should incorporate

into the model some additional features, such as: (i) a 3-D, rather than the current 2-D model, (ii) a point

source, as opposed to the current initializing plane wave, (iii) geometrical irregularities of the air/ground

interface, and (iv) measurements displaced from the air/ground interface, etc. The authors hope that these

algorithms might provide a basis for these further developments. In addition, this methodology can serve as

a base for the imaging of other obscured objects in a variety of applications, including the imaging of

Y.A. Gryazin et al. / Journal of Computational Physics 184 (2003) 122–148 123



unexploded ordinances and pollutant plumes in environmental cleanup sites [9,10]. Land mines are mod-

eled as inclusions of a small size embedded into a known background. A frequency dependent back re-

flected signal is measured on the air/ground interface. Because the sizes of the targets are small compared

with the size of the region of interest, a linearized inverse problem is considered. This is justified by the

assumption that the L2 norms of the targets are small in a certain sense, see Section 2 for details.

2. The forward and inverse problems

2.1. Partial differential equation

The GPR signal is modeled here as a polarized electrical plane wave E0 ¼ ð0; 0; expðix ffiffiffiffiffiffiffiffiffi
l0e0

p

�yÞÞ � expð�ixtÞ propagating along the y-direction in the half space fy < 0g. Here x is the angular frequency

of the signal, l0 ¼ 4p 	 10�7 Henry/m is the magnetic permeability of free space and e0 ¼ 8:854 	
10�12 Farad/m is the dielectric permittivity of free space. It is assumed that fy < 0g is air and fy > 0g is
ground, where the mine-like targets are located. All functions below depend only on the two spatial variables

ðx; yÞ 
 x. Let Eðx;xÞ ¼ ð0; 0; uðx;xÞÞ � expð�ixtÞ be the electric field. Then the following Helmholtz PDE

for the function uðx;xÞ can be derived from Maxwell�s system [17]

r2uþ k2ðx;xÞu ¼ 0: ð2:1Þ

Here the function k2ðx;xÞ has the form

k2ðx;xÞ ¼ x2l0eðxÞ þ ixl0rðx;xÞ or

¼ x2l0eðxÞ 1

�
þ irðx;xÞ

xeðxÞ

�
;

where eðxÞ and rðx;xÞ are, respectively, the electrical permittivity and the electrical conductivity of the
medium. It is also assumed that e 
 e0 in air. Let eðxÞ ¼ erðxÞe0, where er is the relative dielectric constant.

In air erðxÞ 
 1 and rðx;xÞ 
 0. Now introduce the so-called ‘‘loss tangent’’ as [17]

tanðdÞ ¼ rðx;xÞ
xeðxÞ : ð2:2Þ

Then

k2 ¼ x2l0ere0ð1 þ itanðdÞÞ: ð2:3Þ

In this paper it is assumed that the loss tangent does not depend on x, i.e. ðo=oxÞ½tanðdÞ� ¼ 0, at least in the

frequency domains of interest. This condition is a requirement for the integro-differential method originally

introduced in [16] (which is referred to in this paper as the p-method) but not for the more general iterative

correction algorithm introduced in this paper which is referred as the H -method, although a detailed

development of this extension will not be presented in this paper. This loss tangent assumption is satisfied

with sufficient accuracy in many practical scenarios of land mine detection, as can be seen from the data

in [7].

2.2. Parameter ranges

It is useful first to establish the parameter ranges for the PDE (2.1). All units below are given in the SI
system. The frequency of the signal f ¼ x=2p is between 0.5 and 3 GHz, i.e., f 2 ð0:5; 3Þ 	 109 s�1. The
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approximate values of the parameters er, tanðdÞ, k2, k, and the wavelength k ¼ 2p=ReðkÞ for different soil

moistures as well as for trinitrotoluene (TNT) are given in Table 1 for the frequency f ¼ 1 GHz. In this

table the data of [7] is used.

In Section 5 targets filled with TNT will be considered in a background of wet soil with the GPR signal

first propagating through air.

At f ¼ 3 GHz, the wavelength k is less by about a factor of 3, whereas at f ¼ 0:5 GHz, k nearly doubles,

as compared with its values in this table. Therefore,

k 2 ð5; 35Þcm in the ground;
ð10; 60Þcm in the air:

�
ð2:4Þ

This range of wavelengths significantly affects the grid size in the Finite Difference (FD) solution for

both the forward and inverse problems. In order to calculate the forward problem accurately, one

should use at least 10 grid points per wavelength. Suppose, for example, that one wants to calculate the
function u in a square region of size 2m 	 2m. Then because of (2.4), this would mean that one should

use at least a 400 	 400 grid for k ¼ 5 cm. This motivated the development of a new efficient algorithm

for the solution of the Helmholtz equation with complex variable coefficients [14]. Below all data

simulations for the inverse problems (through solutions of forward problems) are computed by the

method of [14].

2.3. Statement of the forward problem

It will be assumed that the electrical parameters e and r have constant background values everywhere in

the ground, except in the mine-like targets, whose sizes are small compared with the size of the region of

interest. Let k0 ¼ k0ðy;xÞ be the function k in (2.3) for the background medium. Then this function has a

discontinuity on the air/ground interface,

k2
0 ¼ x2l0e0 for y < 0;

x2l0ere0 1 þ itanðdÞ½ � for y > 0:

�
ð2:5aÞ

Let u0 ¼ u0ðy;xÞ be the solution of the PDE (2.1), which corresponds to the initial plane wave without

targets present. Then u0 consists of the initial, reflected, and transmitted plane waves [17],

u0 ¼ eik0y þ Rðk0Þe�ik0y for y < 0;
T ðk0Þeik0y for y > 0;

�
ð2:5bÞ

where Rðk0Þ and T ðk0Þ are the reflection and transmission coefficients given by

Rðk0Þ ¼
k�0 � kþ0
k�0 þ kþ0

; T ðk0Þ ¼
2k�0

k�0 þ kþ0
: ð2:5cÞ

Table 1

Approximate values of er, tanðdÞ, k2, k, and k for different soil moistures and TNT at f ¼ 1 GHz

Medium er tanðdÞ k2 ðm�2Þ k ðm�1Þ k ðcmÞ

Air 1 0 439.2 20.9 30

Dry soil 2.9 0.025 1273 þ i31 35:7 þ i0:43 17

Wet soil, 5% moisture 4 0.22 1756 þ i395 42 þ i4:7 15

TNT 2.86 0.0018 1256 þ i2:26 35:4 þ i0:03 17.7
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Here k�0 and kþ0 are the values of k0 for y < 0 and y > 0, respectively. The presence of these coefficients

ensures the continuity of the function u0 together with its first derivatives at fy ¼ 0g:
A solution of the Eq. (2.1) will be sought in the form u ¼ u0 þ v, where the function vðx;xÞ represents the

wave scattered by mine-like targets with compact supports in R2
þ ¼ fy > 0g. Hence, v satisfies the PDE:

r2vþ k2v ¼ � k2
�

� k2
0

�
u0; x 2 R2; ð2:6Þ

where k2 ¼ k2
0 outside of the targets. In addition, Sommerfeld radiation boundary conditions will be im-

posed at infinity

lim
r!1

ffiffi
r

p ov
or

�
� ik0v

�
¼ 0; ð2:7Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, Imðk0Þ > 0 and the limit holds uniformly in all directions. Eqs. (2.6) and (2.7) specify

the forward problem including the discontinuity in the refractive index at fy ¼ 0g: It was shown in ([4],

Proposition A.1.3) that a 3-D analog of the forward problem (2.6), (2.7) has an unique solution in a certain

Sobolev space. This leads us to assume throughout this paper that a similar result is valid in the 2-D case.

It is natural to consider in practical computations a bounded domain GL, which is obtained by a cut-off
of the infinite space R2. Here GL will be taken to be the square GL ¼ fjxj; jyj6 Lg, and the solution will be

carried out using the approach developed by the authors in [14]. In this case the condition (2.7) is replaced

with the Sommerfeld-like boundary conditions

vx � ik0vjx¼�L ¼ 0; vy � ik0vjy¼�L ¼ 0: ð2:8Þ

It was shown numerically in [14] that if the targets are located ‘‘well within’’ the square GL (i.e., far from
the boundaries), then, for the parameter ranges listed in Table 1, the resulting values of the function vðx;xÞ
for points x located near the air/ground interface fy ¼ 0g are independent of L for LP 53 cm. For this

reason, for the solution of the inverse problem will be carried out over a smaller domain X � GL, X � R2
þ.

First data vjy¼0 and vy jy¼0 for the inverse problem using the solution of the forward problem in the domain

GL with L ¼ 1:5 m is generated. Next, to solve the inverse problem the domain

X ¼ xf ¼ ðx; yÞ : jxj < L1 ¼ 0:6m; 0 < y < L2 ¼ 0:4mg

will be used. In doing this, the following boundary conditions for the function v on the side and top

boundaries of the domain X will be used:

vx � ik0vjx¼�L1
¼ 0; ð2:9aÞ

vy � ik0vjy¼L2
¼ 0: ð2:9bÞ

2.4. Statement of the inverse problem

Let e1 and tanðd1Þ be the values of the parameters e and tanðdÞ everywhere in the ground, except for the

mine-like targets. Then

eðxÞ ¼ e1 þ heðxÞ; tanðdÞ ¼ tanðd1Þ þ hrðxÞ; ð2:10Þ

where the perturbations heðxÞ and hrðxÞ are due to the presence of the mine-like targets. Hence, the de-
termination of these functions would yield both the locations of these targets and the values of the electrical

parameters within them. For the sake of convenience, a perturbation hðxÞ of the background coefficient

k2
0ðx;xÞ as a ‘‘whole’’ will be introduced:
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hðxÞ ¼ k2ðx;xÞ � k2
0ðx;xÞ

k2
0ðx;xÞ : ð2:11Þ

Hence,

k2ðx;xÞ ¼ k2
0 1½ þ hðxÞ� ð2:12aÞ

¼ x2k2
0sðxÞ 1½ þ hðxÞ�; ð2:12bÞ

where k0sðxÞ ¼ k0ðx;xÞ=x. The perturbation function hðxÞ is independent of x because of the loss tangent

assumption that ðo=oxÞ½tanðdÞ� ¼ 0. By (2.10)–(2.12b) the function hðxÞ can be obtained from the functions

heðxÞ and hrðxÞ through the following transformation:

h ¼ he þ i e1hr þ he tanðd1Þ þ hehr½ �
e1 1 þ itanðd1Þ½ � :

Once the complex-valued function hðxÞ has been obtained from the solution of the inverse problem, the

perturbations of the physical parameters can be recovered by using the formulas:

he ¼ e1 ReðhÞ½ � tanðd1Þ � ImðhÞ�;

hr ¼ ImðhÞ � 1 þ tan2ðd1Þ½ �
1 þ ReðhÞ � tanðd1Þ � ImðhÞ :

Inverse problem. Determine the perturbation function hðxÞ, given the functions uðx;xÞ, wðx;xÞ defined as

uðx;xÞ ¼ vjy¼0; ð2:13aÞ

wðx;xÞ ¼ vy jy¼0 ð2:13bÞ

for x 2 ð�L1; L1Þ, x 2 ðxmin;xmaxÞ.
The measurements are performed at points on a certain interval ð�L1; L1Þ of the line fy ¼ 0g located on the

air/ground interface and at discrete frequencies x 2 ðxmin;xmaxÞ, by solution of a series of forward problems,

one for each frequency. One way to evaluate the normal derivative w in (2.13b) given u would be to solve the

boundary value problem (2.6), (2.9a), (2.9b), (2.13a) in the air, i.e. for fy < 0g \ fjxj < L1g, where no targets

are present, but for purposes of this study we simply evaluate it along with u, adding Gaussian noise.

The resulting PDE for the function v is

r2vþ k2
0vþ k2

0hðxÞv ¼ �k2
0u0hðxÞ; ð2:14Þ

where hðxÞ is a bounded function with compact support in X and the function u0 is given by (2.5b) (for

y > 0). It will be assumed that the medium of interest, X, is basically homogeneous, except for a few mine-

like targets whose sizes are small compared with the size of X. This suggests the related assumption that also

khkL2ðXÞ � kskL2ðXÞ, where the function sðxÞ 
 1. Note that the function v in (2.14) depends nonlinearly on
the function h. Hence, linearization leads to dropping the hðxÞv term in (2.14). This approach was used

previously in a similar context in the publications [15,16,19] of the authors. Using (2.5b) to substitute for u0,

gives the linearized PDE as:

r2vþ k2
0v ¼ �k2

0T ðk0Þeik0yhðxÞ; x 2 X ð2:15Þ

with the boundary conditions (2.9a), (2.9b), (2.13a), and (2.13b). It should be noted that (2.15) is a PDE

with two unknown functions, hðxÞ and vðx;xÞ, and two boundary conditions v ¼ uðx;xÞ and vy ¼ wðx;xÞ
along the side y ¼ 0, for many values of x.
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The function hðxÞ in (2.15) may be isolated by dividing both sides by k2
0T ðk0Þeik0y . Introduce the new

function Hðx;xÞ as

Hðx;xÞ ¼ v
k2

0T ðk0Þeik0y
: ð2:16Þ

Then (2.15) becomes

r2H þ 2ik0Hy ¼ �hðxÞ; x 2 X ð2:17Þ

with the corresponding derived boundary conditions:

H jy¼0 ¼ euuðx;xÞ; Hy jy¼0 ¼ ewwðx;xÞ; Hx � ik0H jx¼�L1
¼ 0; x 2 xmin;xmaxð Þ; ð2:18aÞ

Hy jy¼L2
¼ 0: ð2:18bÞ

3. Two inverse algorithms

In this section two novel iterative algorithms for approximating the above inverse problem in a best fit

sense are developed. In order to simulate data for the inverse problem, we begin in both cases with a series

of finite difference (FD) solutions to the forward problem (2.6)–(2.8) using the solution method developed

in [14], over a set of discrete frequencies. The values uðx;xÞ ¼ vðx; 0;xÞ and wðx;xÞ ¼ vyðx; 0;xÞ are

available from the above forward solutions at the computational grid points over the set of discrete fre-

quencies and were used to evaluate euuðx;xÞ and ewwðx;xÞ. Then multiplicative Gaussian noise was added to

both euu and eww with r ¼ 0:10 (i.e., 10% noise level) in euu and eww. The mathematical expectation of this noise is
zero. A C2 cubic spline smoothing process in x, following de Boor [2], was applied to euuðx;xÞ and ewwðx;xÞ.
In this approach the spline coefficients are calculated using a functional, that includes the squares of the

deviations of the spline from the noisy data and L2 norms of the second derivative of the spline. Mini-

mization of this functional establishes a compromise between the requirement of staying close to the given

data and obtaining a smooth function. The spatial computational grid for the inverse solver has in general

no relationship to the computational grid used in the above forward solver except that the air–soil interface

line is common to both. Thus no grid crimes are committed. For a given frequency x, euuðx;xÞ and ewwðx;xÞ
are first evaluated by this smoothed cubic spline at surrounding forward grid node points xi�1 6 x6 xi, then
evaluated at x by linear interpolation. This procedure gives euu and eww as continuous functions of x and x,

piecewise linear in x and piecewise cubic in x. Details and illustrative graphs for two different target ap-

plications are presented in Section 5.

A common feature of both algorithms is that they involve a series of frequency sweeps in which a sequence

of overdetermined BVPs are solved from xmax to xmin. A linear least squares fit of the overdetermined

equations for the FD discretized form of this BVP is evaluated at each step. A major difference between these

methods, is that the first one corrects the perturbation term at each frequency step by a sort of ‘‘back-

propagation’’ approach, whereas in the second the unknown perturbation term is originally eliminated
through differentiation with respect to frequency, leading to the solution of an integro-differential PDE, in

which integration is carried out with respect to frequency. An approximation to the perturbation term is

recovered at the end of this process. In later frequency sweeps, the restart for the second method uses the

result of a calculation using the recovered perturbation term. Both methods are stopped when the maximal

magnitude of h decreases, the fluctuations increase, or when the change is sufficiently small.

In each of the algorithms a matrix system, which can be written in abstract form as

ðB�
j BjÞðfjÞ ¼ ðB�

jKjÞðgjÞ, is to be solved for each iteration step j: Here Bj is a finite difference analog of the
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elliptic operator r2 þ 2ik0o=oy in (2.17) at x ¼ xj with the boundary conditions (2.18a) and (2.18b), Kj is

certain matrix operator, gj is a known vector, and vector fj is unknown. For the case where an analog of the

boundary data (2.18a), (2.18b) was given on the entire boundary oX (rather than on only a part, as in the

current case) convergence of a very similar process was proven in Section 5.1 of [16]. This result offers a

heuristic argument suggesting convergence for both of the algorithms of this section.

It was proven in [16] that the recovery of the 4th derivatives with respect to x and y of an analog of fj was

stable. This is supportive of the stability of the computation of the first and second derivatives of the

function H , which we compute to recover the perturbation term h, as per (2.17). Other viewpoints also lead
us to the same conclusion, in additional to our considerable numerical experience: for example there is a

long history in the use of Alternating Directions Implicit methods that shows that when later calculations

evaluate finite differences using the same intermediate solutions used in their development, results are

stable, but otherwise not [3]. It should be noted that three different regularizing procedures are applied.

First, the noise in the data is smoothed using a C2 cubic spline smoothing process (Section 5.2). Second, all

frequencies higher than xmax are cut-off. Finally, the discretization and its iterations are another important

regularizing tool.

3.1. Discretization method

The physical domain for the inverse problem is selected to be ½�Lx; Lx� 	 ½0;Ly �: In the discretization of

the PDE second order centered finite-difference approximations are used, with a uniform mesh of size
Dx	 Dy, where Dx ¼ 2Lx=Mx, Dy ¼ Ly=My with Mx;My being the numbers of grid points in the x and y
directions, respectively. The boundary conditions are imposed by use of second order correct formula

centered on each boundary, using fictitious values outside of X. A uniform frequency step of Dx ¼
ðxmax � xminÞ=N , where N is the number of frequency intervals, is used to partition the interval ½xmin;xmax�
into n� 1 subintervals: xmin ¼ bn < bn�1 < � � � < b1 ¼ xmax: The spatially gridded region uses x values over

the interval ½�Lx þ Dx=2; Lx � Dx=2� and y values over ½Dy=2; Ly � Dy=2� plus the added fictitious points.

The alternative gridding method which places grid points directly on the boundary would be expected to

give similar results, but has not been explored here.

3.2. First inverse algorithm (H -method)

The inverse problem will be solved by the following: let BðxÞ be the FD-based matrix representing the
left-hand sides of Eqs. (2.17), (2.18a), and (2.18b) as a function of x: It is important to note that BðxÞ
depends only on x, k0, and the spatial grid. Also, let SH ðx; h; euu; ewwÞ be the FD operator for the right-hand

sides of (2.17), (2.18a), and (2.18b). SH depends not only on x, k0, and the spatial grid but also on a grid

function h and of course the overdetermined boundary data euu and eww evaluated at the interface grid points.

Then on step j solve the overdetermined linear system

BðbjÞH
j ¼ SH bj; h; euu; eww	 


; ð3:1Þ

where the vector H
j

represents the FD approximation to the grid values of Hðx; bjÞ, given h. Note that the

system (2.17), (2.18a), and (2.18b) gives one equation for each spatial grid point, plus one additional

equation for each grid point along the air–soil interface y ¼ 0. Once H
j

has been evaluated, one can exploit

the fact that it is only an approximate solution to the overdetermined system (3.1), to again use (2.17) to

compute an improved value of h, as

h :¼ � r2H
j

	
þ 2ik0ðxÞHj

y


���
x¼bj

; ð3:2Þ
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where the differential operators are understood in terms of finite differences. This process can be applied

kP 1 times for each value of j, always using the latest update of h.

The complete algorithm for the H -method can now be stated as follows: Initialize h to be the zero vector.

Then complete a series of sweeps (beginning each new sweep with the latest value of h from the previous

sweep) as follows until the stopping criteria are satisfied.

For j ¼ 1; . . . ; n:

I. Solve the overdetermined linear least squares problem (3.1) for H
j

using the latest value of h.

II. Evaluate H
j
y from H

j
using FD.

III. Use (3.2) at x ¼ bj to compute the updated value for h from H
j

and H
j
y .

IV. Repeat I–III kP 1 times.

The normal equations method is used to solve the overdetermined linear system (3.1). An alternative

approach would have been to use the QR decomposition of A [13], which while more robust would have

been considerably more time consuming both because of the increased effort required by the direct de-

composition and the absence of iterative alternatives. As it stands, (3.1) is essentially a 5-banded matrix

system. Applying the normal equations method, involves multiplying both sides of the matrix system (3.1)

by the conjugate transpose of BðbjÞ: This gives the square 13-band system

B�ðbjÞBðbjÞH
j ¼ B�ðbjÞSH bj; h; euu; eww	 


; ð3:3Þ

which is clearly invertible since the columns of the original matrix BðbjÞ are linearly independent. In fact the

new matrix B�ðbjÞBðbjÞ is Hermitian positive definite. This family of equations involves a series of sweeps

with slowly changing values of x ¼ bj, and one or more inner iterations for each value of j.
In Section 4 an iterative solution method based on the preconditioned conjugate gradient method is

developed that specifically exploits this structure.

3.3. Second inverse algorithm (p-method)

The second inverse method studied here was originally introduced by the authors in [16]. The two

methods are similar in their use of sweeps to progressively improve the grid function h, their use and

treatment of overdetermined boundary conditions and many details of their implementation. The major

difference between them is in their treatment of the important difficulty in solving the PDE (2.17): that it

consists of one equation with two unknown functions hðxÞ and vðx;xÞ. A principal idea of the ESM in the

past has been to eliminate the perturbation term hðxÞ by differentiation of the original PDE with respect to

a parameter on which hðxÞ does not depend, and then later to recover hðxÞ by use of the original PDE. The
parameter is x in this case. It will be observed that the new difficulty is that the resulting equation becomes

an integro-differential equation, rather than a conventional PDE, which is complicated by requiring an

approximate value of Hðx;xÞ for some value of x:
Following this approach, differentiate (2.17) with respect to x eliminating hðxÞ. Let

pðx;xÞ ¼ oH
ox

: ð3:4Þ

As discussed in more detail in [16], it is assumed that for every x 2 X

lim
x!1

Hðx;xÞ ¼ 0 ð3:5Þ

and

p; py 2 L1 xmin;1ð Þ ð3:6Þ
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as functions of x. In the work that follows the working assumption is made that conditions (3.5) and (3.6)

hold. Hence,

Hðx;xÞ ¼ �
Z 1

x
pðx; sÞds ð3:7aÞ

¼ �
Z xmax

x
p x; sð Þds þ H x;xmaxð Þ: ð3:7bÞ

Eqs. (3.7a) and (3.7b) leads to the result that for bHH ðxÞ � Hðx;xmaxÞ, and bHHyðxÞ � Hyðx;xmaxÞ

Hðx;xÞ � �
Z xmax

x
pðx; sÞds þ bHH ðxÞ; ð3:8aÞ

Hyðx;xÞ � �
Z xmax

x
pyðx; sÞds þ bHHyðxÞ: ð3:8bÞ

For notational convenience the ‘‘�’’ in (3.8a) and (3.8b) will be replaced with ‘‘¼’’ in later references.
Let g1ðx;xÞ ¼ ðo=oxÞeuuðx;xÞ and g2ðx;xÞ ¼ ðo=oxÞewwðx;xÞ. Because euuðx;xÞ and ewwðx;xÞ are given

by cubic splines in x, their derivative with respect to x is trivially evaluated from the spline derivative.

Recalling that k0ðx;xÞ ¼ xk0sðxÞ, note that differentiating (2.17), (2.18a), and (2.18b) by x and using

(3.7a)–(3.8b), leads to the system:

r2p þ 2ixk0sðxÞpy ¼ 2ik0sðxÞ
Z xmax

x
pyðx; sÞds

�
� bHHyðxÞ

�
; x 2 X; ð3:9aÞ

pjy¼0 ¼ g1ðx;xÞ; py jy¼0 ¼ g2ðx;xÞ; py jy¼L2
¼ 0; ð3:9bÞ

px � ixk0sðxÞpjx¼�L1
¼ �ik0sðxÞ

Z xmax

x
p x; sð Þds

�
� bHH ðxÞ

�����
x¼�L1

: ð3:9cÞ

Thus, we have obtained the boundary value problem (3.9a)–(3.9c) for the integro-differential equation

(3.9a) with Volterra-like integrals being present in both the equation itself and the left and right boundary

conditions.

Again let BðxÞ be the FD-based matrix representing the left-hand sides of Eqs. (2.17), (2.18a), and

(2.18b) as in the previous subsection. Consider the grid valued functions H
1
, H

1

y , p
j, pjy , k0s, and h, where for

example pj and k0s represent the grid values of pðx; bjÞ in its current approximation, 16 j6 n, and k0sðxÞ. To

solve (3.9a)–(3.9c), begin with x ¼ b1 ¼ xmax. Initialize h to be zero, and solve the overdetermined system
(3.1) for H

1
as in the H -method, using (3.3). Evaluate H

1

y from H
1

by centered finite differences. Now solve

the overdetermined system (3.9a), (3.9b), (3.9c) in its FD formulation for p1 by the normal equations

method using the least squares matrix B�ðxmaxÞBðxmaxÞ and a right-hand side derived from (3.9a)–(3.9c),

noting that the two integrals evaluate to zero. For the cases where j > 1, the two integrals in (3.9a) and

(3.9c) are approximated by the trapezoid rule. ThusZ xmax¼b1

bj

p sð Þds � Dx
pj

2

"
þ
Xj�1

l¼2

pl þ p1

2

#
and

Z xmax¼b1

bj

py sð Þds � Dx
pjy
2

"
þ
Xj�1

l¼2

ply þ
p1
y

2

#
: ð3:10Þ

Eqs. (3.9a), (3.9b), (3.9c), and (3.10) lead to an overdetermined linear system for pj, j > 1 at x ¼ bj:

r2pj þ 2i x

�
� Dx

2

�
k0spjy ¼ 2ik0s Dx

Xj�1

l¼2

ply

"
þ Dx

p1
y

2
� H

1

y

#
; ð3:11aÞ
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pjjy¼0 ¼ g1ðx;xÞ; pjy jy¼0 ¼ g2ðx;xÞ; pjy jy¼L2
¼ 0; ð3:11bÞ

pjx � i x

�
� Dx

2

�
k0spjjx¼�L1

¼ �ik0s Dx
Xj�1

l¼2

pl
"

þ Dx
p1

2
� H

1

#
: ð3:11cÞ

Note that (3.11a)–(3.11c) can be extended to the case j ¼ 1, by letting Dx ¼ 0, since the integral is zero in
this case. Let Sp;jðx;Dx; k0s; g1; g2; p1; p2; . . . ; pj�1;H

1
;H

1

yÞ be the FD operator for the right-hand sides of

(3.11a)–(3.11c). Sp;j depends also on the spatial grid plus the previous p vectors. The x term is required to

evaluate g1 and g2. The terms H
1

and H
1

y are determined by the initial approximation for h, as described

above. Thus expressed in matrix form, (3.11a)–(3.11c) becomes:

B bj

�
� Dx

2

�
pj ¼ Sp;jðbj;Dx; k0s; g1; g2; p1; p2; . . . ; pj�1;H

1
;H

1

yÞ: ð3:12Þ

The system (3.12) gives one equation for each spatial grid point, plus one additional equation for each

grid point along the air–soil interface y ¼ 0. As previously in (3.3) the overdetermined system (3.12) will be

solved by the normal equations method. Note that the resulting Hermitian positive definite matrix system

B�ðxÞBðxÞpj ¼ B�ðxÞSp;j as a function of x will be identical to that obtained earlier, the difference being in

the right-hand sides and the frequency x at which B is to be evaluated.

The complete algorithm for the p-method can now be stated. Initialize h to be the zero vector. Then for
each sweep, loop as follows until the stopping criteria are satisfied:

I. Evaluate H
1

and H
1

y from the latest value of h using (3.3) for x ¼ xmax.

II. Solve (3.11a)–(3.11c) for p1, for x ¼ xmax using B�ðxmaxÞBðxmaxÞp1 ¼ B�ðxmaxÞSp1ðxmax;Dx ¼ 0;
k0s; g1; g2;H

1
;H

1

yÞ.
III. For j ¼ 2; 3; . . . ; n solve the overdetermined system (3.12) by the normal equations method, giving

B� bj

�
� Dx

2

�
B bj

�
� Dx

2

�
pj ¼ B� bj

�
� Dx

2

�
Sp;jðbj;Dx; k0s; g1; g2; p1; p2; . . . ; pj�1;H

1
;H

1

yÞ: ð3:13Þ

IV. Evaluate

H
n � Dx

"
� pðxnÞ

2
�
Xn�1

l¼2

pðxlÞ �
pðx1Þ

2

#
þ H

1
:

V. Evaluate H
n
y from H

n
using FD.

VI. Use (3.2) at x ¼ xmin to compute the updated value for h, using H
n

and H
n
y .

4. An effective preconditioner for the conjugate gradient method

The marching technique of the previous section required the solution of an overdetermined system of the
form Bjxj ¼ b

j
, j ¼ 1; 2; . . . ; n, where xj was either H

j
or pj and Bj was BðxjÞ or Bðxj � ðDx=2ÞÞ. We have

chosen to use the normal equations method, which leads to solving Bj�Bjxj ¼ Bjb
j
, j ¼ 1; 2; . . . ; n. Since Bj is

essentially a banded matrix similar to that resulting from the Laplacian operator, Bj�Bj is a 13-band matrix

which can be explicitly evaluated at little cost. Denote Bj�Bj by Aj. Since the columns of Bj are linearly

independent, Aj is clearly invertible, and hence Hermitian Positive Definite (HPD). In contrast, for integral

equation-based methods, a full matrix system has to be solved. This limits the number of grid points which
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can be used. But even in the case of a band matrix, conventional Cholesky factorization techniques are

needlessly time consuming, so iterative algorithms are to be preferred. In the case of a HPD matrix the

preconditioned conjugate gradient method is a natural choice. But the key issue as usual is the selection of a

preconditioner.

4.1. Direct methods

We will begin by considering direct sparse factorization methods for HPD matrices. The three most

common highly efficient direct techniques for the case where fast Fourier transform methods are not

available are skyline, one way dissection (1WD) and nested dissection (ND) [12]. Each approach requires

reordering the unknowns, and hence permuting the rows and columns of Aj. Thus the actual system to be

solved instead of Ajxj ¼ b
j

is PAjP �y ¼ Pb
j
, where y ¼ Pxj, and P is a permutation matrix. For a rectangular

region such as is present for this problem, the skyline method tends to reorder unknowns along the shorter

side; the one way dissection method places separators along the grid, giving a series of decoupled problems

which are then joined on the bottom rows of the new matrix; and nested dissection uses separators in both

directions. For square grids of size m by m and Laplacian type operators these factorization methods are of

order Oðm4Þ;Oðm3:5Þ and Oðm3Þ, respectively [12]. The corresponding storage sizes are of order

Oðm3Þ;Oðm2:5Þ and Oðm2 lnmÞ. As is not so well known, these asymptotic rates often require rather large

values of m to be relevant. Thus in practice there are various crossover points, below which, for example,

skyline methods are best.
A 201 	 71 size grid giving a matrix of size 14,271 will typically be used, and for comparison a 301 	 106

grid with a 31,906 size matrix will also be considered. The efficiency of the solve part will later prove to be

very important when many solves will be calculated for each factorization using the preconditioned con-

jugate gradient method. Efficient storage is also an issue. In their classic text, George and Liu [12] develop

and implement all the above methods, including orderings, storage structures, factorizations, and solves.

However their implementations were for real valued positive definite systems, not Hermitian ones. For this

reason it was necessary to modify their various routines to generalize them to Hermitian matrices. This

primarily involved switching to complex arithmetic and paying careful attention to where conjugates must
be used. This procedure has been carried out for all of the three above methods. It should be noted that

improved implementations, for example for the factorization and solves, have been recently developed that

better use cache memory by concentrating more of the work on small dense matrices or by the use of frontal

methods [8,11], but little of this is currently within the public domain [8]. The preconditioning approach

developed in the next section would immediately apply to any such improved methods.

In Table 2 below results are presented of applying these three methods to the two matrix systems

considered above, for factorization and solve times, plus storage. It should be noted that the actual run

times for the different methods are in general not proportional to the operation counts since the simpler
methods such as skyline tend to achieve a higher efficiency. There are of course also memory cache issues.

The implementations below are computed on a SGI Origin 200 using one processor and (mostly) double

precision complex arithmetic. Times are in seconds and storage is in megawords. Each megaword requires

Table 2

A comparison of factor and solve times, and storage for three different direct sparse methods applied to two different matrices

Matrix size ND 1WD Skyline

Factor Solve Storage Factor Solve Storage Factor Solve Storage

14,271 2.88 .099 .855 4.99 .113 .503 4.56 .265 1.769

31,906 10.64 .254 2.212 21.4 .32 1.399 22.23 .875 5.929
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8–16 megabytes (MB) of storage. All factorizations and conjugate gradient calculations are computed in

double precision, but the factored complex matrix is stored and used only in single precision. This is pri-

marily for efficiency, as the memory communication is somewhat faster using single precision, and the

truncated preconditioner is about as effective as its original double precision version. This also proves

advantageous for purposes of minimizing memory when the possibility of reusing the preconditioners in

multiple sweeps is considered, but this was not the primary motivation.

As can be seen the ND method has by far the fastest factorization times, with the faster asymptotic

factorization times of 1WD as compared to the skyline method only dominating for the larger matrix, and
then only marginally. The solve times, which will dominate the PCG calculations, are somewhat better for

ND than 1WD, but far better than for skyline for both matrices. For both matrix sizes, 1WD has the

smallest storage, with the skyline method having far greater storage requirements. If storage were the

critical issue, 1WD would be the preferred method, with ND being only about 12% faster for the solves and

42% faster for the factorizations. The effective time required for 1WD versus ND in the context of the PCG

method for the smaller matrix will be reported later. Since storage for ND is a modest 14–36 MB in double

precision plus other overhead, this method will be focused on as the method of choice, given its superior

factorization and solve times compared with the other two direct sparse methods.

4.2. A preconditioned conjugate gradient method

As might be expected, the above sparse direct results can be significantly improved by use of the PCG
method [13,22] with the key question involving, as usual, the choice of an effective preconditioner. It is

common when applying the conjugate gradient method to the normal equations to form the matrix vector

product not as ðBj�BjÞx but instead as Bj�ðBjxÞ, so as to perform just two matrix vector products instead of

the often more expensive matrix product [22]. Due to the simple band structure of Bj, the matrix matrix

multiply is inexpensive in our case, and there is an advantage to having just one matrix Aj in explicit form.

The issue of finding an effective preconditioner here is especially pressing since the convergence rate of the

conjugate gradient method [13] is (
ffiffiffi
k

p
� 1Þ=ð

ffiffiffi
k

p
þ 1Þ or approximately 1 � 2=

ffiffiffi
k

p
, where k is the condition

number of Aj, and the condition number of Aj is the square of the ratio of the largest to the smallest singular
values of the original matrix Bj Saad [22] comments that ‘‘Recent research on iterative techniques has been

devoted in great part to the development of better iterative accelerators, while �robust� preconditioners have

by and large been neglected’’. He also comments that ‘‘normal equations are also difficult to precondition’’.

It is the development of such a robust preconditioner for this family of normal equations that is the focus of

this section.

Here a sequence of problems must be solved where the matrix depends only on the frequency x and

hence can be evaluated at any time. For both methods each right-hand side can only be computed after the

successful solution of the previous system. But since the matrix Bj ¼ BjðxjÞ, for frequency xj, changes only
slowly for nearby frequencies, its factorization leads to an approximate inverse for many nearby fre-

quencies. Moreover this method is a general method applying not only to both cases under consideration

here, but also to any situation involving the system Axxx ¼ bx where many right-hand sides bx must be

solved for a family of matrices Ax, that change slowly with respect to x. Even if the matrices Ax were not

HPD, iterative methods other than conjugate gradient such as GMRES [21] could be used, with one

factorization of Ax serving as the preconditioner. It is the fact that the factorization cost can be amortized

over conjugate gradient solutions for many right-hand sides that makes this approach attractive. Moreover,

the preconditioner can be evaluated in a centered position over the next set of frequencies, so that it is
effective for both earlier and later frequencies inside the set.

This approach will be combined with the observation that the solution vector also systematically changes

with x, allowing for extrapolation methods to be used. It has been found that a fourth order method (cubic

fit) works well, and decreases the number of iterations, by giving a better starting value. Using this
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approach usually 1–15 iterations are all that are required to reduce the residual by six orders of magnitude.

An automatic algorithm has been developed to give a dynamic mix of the number and placement of

symmetrically placed preconditioners for matrices related to the set of frequencies [xmin, xmax] with a

separation Dx. This algorithm is robust over changes in the CPU, operating system, selection of the sparse

matrix direct factorization and solve methods, cache usage, the frequency density Dx, and the upper and

lower frequencies used, etc. It locally varies the placement of the next preconditioner matrix to be evalu-

ated, and has a criterion for when to start the next series of frequencies. A new preconditioner is evaluated

when the current PCG solve time becomes greater than the average weighted total solution time (one
factorization at a half weight and many PCG solves for frequencies xj at or below the frequency xCenter

where the preconditioner is factored). The algorithm, in a simplified form, is presented below in pseudo-

code. Recall that the frequencies are decreasing.

Dx2¼ {0 for the H method, Dx=2 for the p method}

Restart¼.True.; jcenter ¼ 1;

For j ¼ 1 : n

If (Restart); Use ND to compute the factorization of B�ðxÞBðxÞ at x ¼ xjcenter � Dx2 in

time TFactor; Tcum ¼ TFactor=2; Ncount ¼ �1=2; Restart¼.False.

Setup the next problem at x ¼ xj � Dx2, using a cubic extrapolation from the pre-

vious solutions as a starting value for the PCG method.

Call a PCG routine with the above factorized matrix as a preconditioner to solve

(3.3) or (3.13) in time Tsol.
Tcum ¼ Tcumþ Tsol; Ncount ¼ Ncount þ 1;

If (Tsol > Tcum=Ncount); jcenter ¼ jþ ðj� jcenterÞ ; Restart¼.True.

End

To summarize, in this algorithm the key choices are when to compute a new preconditioner, and how far

ahead it should be placed. How far ahead to place it is selected based on the number of successful steps

since the last preconditioner was evaluated. The use of the half weight is to also amortize TFactor over the

frequencies above xjcenter which implicitly have weights of zero. No use is made of the time to progress to

the next xjcenter, although as a rule the intervals are nearly symmetric.

4.3. Performance tests

The performance of this preconditioner approach will be measured in two ways: by varying the fre-
quency spacings and by varying the underlying spatial mesh density. Spatial meshes of 201 	 71 and

301 	 106, frequency densities of .01, .02, .05, and .10 GHz over an overall frequency range .52–3.0 GHz

with fourth order extrapolations from the previous solutions to the next solution and the ND method will

be used. In addition solutions over the 201 	 71 mesh using 1WD (�) in place of ND, and also with ND but

no extrapolation (y) will be evaluated. Zero will be used for the starting iterate at the first frequency, and

iterations will stop when the residual is six orders of magnitude smaller than the initial right-hand side in

the L2 norm. Results are reported for both the p- and H -methods.

The reportage in 3 gives five results for each run: The total number of preconditioners used; the
average number of iterations until convergence; the maximum number of iterations; the total time

(bold); and the average time per setup and solution for each matrix system, including the precondi-

tioner times.

4.3.1. Extrapolation of solutions

Comparing the second and third rows of Table 3 for both the p- and H -methods for average times shows

that the extrapolation approach for starting iterates is very successful for the two denser frequency sets .01
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and .02 GHz, and is especially advantageous for the H -method, and successful to a lessor degree for the

frequency spacing of .05 GHz. It has little impact at .10 GHz.

4.3.2. Comparing 1WD with ND

Comparing the third and fourth rows, the use of 1WD instead of ND increases the run time for a single
sweep by about one third. For multiple sweeps the preconditioner factorizations could be held in RAM,

further minimizing the effect of the factorization costs. If RAM were limited, for example to 128 MB on a

PC, the use of 1WD, with multiple sweeps and preconditioner recall, would give a final throughput

dominated by the solve times. From Table 2, the additional memory usage would be about 4 MB per

preconditioner. Of course where sufficient RAM is available, ND is the method of choice, but for multiple

sweeps and recall, the relative timing advantage would not be great compared with the gain achieved by

reuse of the preconditioners. The use of 1WD will not be explored further here.

4.3.3. Scalability of the ND approach with extrapolation

For the ND runs the convergence rate seems fairly independent of these matrix sizes, as the algo-

rithm automatically shifts towards fewer preconditioners, and slightly more iterations to compensate for

the longer factorization times. The method seems to be exhibiting excellent scalability for ND, with the
total solution times increasing by factors from about 2.6 to 2.9 as the matrix size increases by a factor

of 2.2.

5. Numerical experiments

The main goal of the numerical experiments presented in this section is to consider and compare the

properties and performance of the proposed algorithms for realistic ranges of parameters and frequencies.
The values of the coefficients in the Helmholtz equation, which correspond to the electromagnetic prop-

erties of air, soil, and different targets were presented in Table 1. In the numerical experiments the back-

ground medium consists of air and wet soil with a 5% moisture content. The targets are assumed to be filled

with TNT.

The physical domain for the inverse problem is selected to be ½�Lx; Lx� 	 ½0;Ly �, where Lx ¼ 60 cm and

Ly ¼ 40 cm, with a 201 	 71 grid. Other grid and frequency selections would be chosen for other appli-

cations. In both approaches the system was nondimensionalized in space and frequency. However for

simplicity the results are presented here in the original coordinate systems. The spatial grids selected are
uniform, but do not necessarily have the same spacings in x and y.

Table 3

Single sweeps with four frequency densities, two spatial meshes

p-Method .01 GHz (248 freq.) .02 GHz (124 freq.) .05 GHz (49 freq.) .10 GHz (24 freq.)

201 	 71� 12, 3.6, 6, 240, 0.97 10, 5.3, 10, 171, 1.38 7, 7.2, 15, 98, 1.99 5, 10.8, 27, 69, 2.88

201 	 71y 20, 5.0, 8, 256, 1.03 16, 5.4, 9, 154, 1.24 9, 7.1, 14, 80, 1.63 6, 9.4, 18, 51, 2.14

201 	 71 15, 3.3, 5, 193, 0.78 12, 4.8, 9, 134, 1.08 9, 6.0, 11, 74, 1.51 6, 9.4, 18, 52, 2.17

301 	 106 13, 3.4, 6, 513, 2.07 10, 5.1, 10, 368, 2.96 7, 6.9, 14, 209, 4.26 5, 10.4, 25, 147, 6.10

H -Method .01 GHz .02 GHz .05 GHz .10 GHz

201 	 71� 10, 2.6, 5, 191, 0.77 9, 4.3, 9, 148, 1.19 7, 6.8, 14, 94, 1.93 5, 10.8, 32, 69, 2.89

201 	 71y 22, 5.0, 8, 263, 1.06 16, 5.6, 10, 156, 1.26 9, 7.4, 15, 82, 1.67 7, 8.7, 16, 52, 2.19

201 	 71 11, 2.5, 5, 155, 0.63 10, 3.9, 8, 114, 0.92 8, 6.0, 11, 71, 1.45 6, 9.1, 20, 51, 2.13

301 	 106 9, 2.6, 5, 403, 1.63 8, 4.1, 7, 303, 2.44 6, 7.0, 17, 199, 4.07 5, 10.8, 25, 150, 6.26
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5.1. A single inclusion of circular shape filled with TNT

To demonstrate the robustness of this technique, consider a circular target filled with TNT, with center

at x ¼ ðx0;y0Þ ¼ ð10; 5Þ cm and a diameter of 5 cm. Thus hðxÞ ¼ ðk2
TNT � k2

wetsoilÞ=k2
wetsoil ¼ �0:319 � 0:152i.

The real part of the corresponding function hðxÞ is displayed in Fig. 1.

5.2. Noise removal by cubic splines in the forward solution

For this application simulations are made using the forward solution for the discrete frequencies

x ¼ 2p 	 ½:50 : :01 :3:00�GHz. The physical domain is taken to be a square with 300 cm sides centered about

the air–soil interface, and a 400 	 400 point computational grid is used to achieve accuracy at the higher

frequency values. In the inverse problem xmin and xmax are chosen so that 2p 	 :50GHz6 xmin < xmax 6

2p 	 3:00 GHz, and the frequency spacing is taken to be uniform from xmin to xmax, but this is not a re-

quirement of the method. Two of the studies to be made here consider the effect of various choices of xmin, xmax

and the frequency spacing Dx on the quality of the inverse problem solution.

For Figs. 2–4 the solid line represents the real parts of the original values obtained through the solution

of the forward problem, the stars, which are the data originally received by the algorithm, represent those

values with r ¼ :10 multiplicative Gaussian noise added and the dot-dash line the result after the spline

smoothing process described in Section 3. Figs. 2 and 3 display the real parts of Hðx;xÞ ¼ euuð10;xÞ and the

normal derivative Hyðx;xÞ ¼ ewwð10;xÞ as a function of f ¼ x=2p, just above the target at x ¼ ð10; 0Þ on the

air–soil interface. Despite the scatter in the noisy data, the C2 cubic spline smoothing process appears to be

doing a good job of returning smoothed values close to the original. The largest differences are around the
peaks of the curves and to the far left of Fig. 3. Fig. 4 displays the real part of Hðx;x0Þ ¼ euuðx;x0Þ along the

air–soil interface ðy ¼ 0Þ for x0 ¼ 1:0 � 2p GHz. It should be clarified, that smoothing was done for each

spatial point x ¼ ðxi; 0Þ, where xi ¼ �Lx þ Dxði� 1=2Þ; i ¼ 1; . . . ;Mx, with respect to the frequency x as

described above. However, no smoothing was performed with respect to the spatial variable x.

Fig. 1. Re½hðxÞ� for a circular shaped target filled with TNT.
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Fig. 2. Re½Hðx;xÞ� as a function of the frequency f at x ¼ ð10; 0Þ.

Fig. 3. Re½Hyðx;xÞ� as a function of the frequency f at x ¼ ð10; 0Þ.
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5.3. Single target solutions by the H - and p-methods

In this first test the H - and p-imaging algorithms were applied to a single target of circular shape filled with

TNT as specified in Section 5.1. The results used data over frequencies from .5 to 3 GHz, using an increment

of Df ¼ :01 GHz. Figs. 5 and 6 display the real part of the imaged function h :¼ himagedðx; yÞ obtained after

one sweep of the H -method and two sweeps of the p-method, respectively. The contour plots of the recovered

function RealðhÞ are similar, both accurate as to the centered location, both lacking significant artifacts,

except that the H -solution is slightly lower in its recovered coefficient values. The vertical image size and lack

of diagonal artifacts are somewhat more favorable for the H -method. The imaginary part of h here and

elsewhere is in general less satisfactory, which is related to problems in phase recovery.
The stopping criteria here and elsewhere requires running one more sweep than was used, stopping when

the last result either decreased, showed significant oscillations or changed very little. The value of k for the

inner iterations of the H -method was always selected to be k ¼ 1.

5.4. The effect of the upper frequency cutoff xmax on solutions

In this subsection the effects of using frequencies from fmin ¼ :50 GHz to various upper values of

fmax ¼ xmax=2p from 1.0 to 3.0 GHz is considered for both the H - and p-methods. The frequency spacing

Df is fixed at .01 GHz. To clearly demonstrate the results quantitatively, cross-sections of the real part of

the imaged function h along both vertical and horizontal lines are displayed for each method. In each case,

the cross-section is along the line where the values are greatest. Typically for the horizontal lines this is close

to y ¼ 5 cm, and for the vertical lines close to x ¼ 10 cm. In Figs. 7–10 the solid lines represent the exact
values and various other lines, as identified by the legend, the cross-sections of various computed solutions.

As one can see increasing of the range of the frequencies from 0.5–1 to 0.5–1.5 to 0.5–2 GHz gives

significant improvements in the heights of the recovered images for both the H - and p-methods and is

Fig. 4. Re½Hðx;x0Þ� for x0 ¼ 1:0 � 2p GHz as a function of x along fy ¼ 0g.
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thus clearly desirable. The effect of increasing the upper limit to 2.5 or 3 GHz is more complicated. In

Figs. 7 and 9, the H -method with horizontal and vertical cross-sections, there appears to be no

advantage to going beyond fmax ¼ 2 GHz. This is a favorable conclusion for the H -method both from

Fig. 6. Re½himagedðxÞ� for the solution of the inverse problem by the p-method.

Fig. 5. Re½himagedðxÞ� for the solution of the inverse problem by the H -method.
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the viewpoint of the significantly reduced physical measurement requirements and reduced computa-

tional requirements. Also all results were achieved in the first sweep, using the stopping criteria of the

previous subsection. In Figs. 8 and 10, the p-method, all results were achieved after two sweeps. Since

using the frequency range 0.5–3 GHz gives slightly improved values over 0.5–2.5 GHz, fmax ¼ 3 GHz

Fig. 8. Horizontal cross-sections of Re½himagedðxÞ� after two sweeps using the p-method for different values of xmax.

Fig. 7. Horizontal cross-sections of Re½himagedðxÞ� after one sweep using the H -method for different values of xmax.
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will be used for the p-method in the remainder of this paper, although the alternative choice of

fmax ¼ 2:5 GHz could give similar results. The accurate horizontal width of the target originally seen

in Figs. 5 and 6 can also be observed in Figs. 7 and 8. The insufficiently sized vertical target widths

Fig. 10. Vertical cross-sections of Re½himagedðxÞ� after two sweeps using the p-method for different values of xmax.

Fig. 9. Vertical cross-sections of Re½himagedðxÞ� after one sweep using the H -method for different values of xmax.
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generated by both methods can be observed in Figs. 9 and 10, which also show clearly the higher

quality of the size of the vertical width given by the H -method, which was earlier observed in Figs. 5

and 6.

Fig. 11. Horizontal cross-sections of Re½himagedðxÞ� after one sweep using the H -method for different values of Dx.

Fig. 12. Horizontal cross-sections of Re½himagedðxÞ� after two sweeps using the p-method for different values of Dx.
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5.5. The effect of the frequency density Dx on solutions

In this subsection the effect of various frequency spacings Df ¼ Dx=2p will be examined, where fmax is

fixed at 2 GHz for the H -method and 3 GHz for the p-method. Runs for Df ¼ :01, .02, .05, and .10 GHz are

Fig. 13. Re½hðxÞ� for multiple mine-like targets of various sizes.

–
–

–

–

–

– – –

Fig. 14. Horizontal cross-sections of Re½himagedðxÞ� using the H - and p-methods.
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considered for both the H - and p-methods. All H -method runs stopped after one sweep, and all p-method

runs after 2 sweeps. As usual, one additional sweep was required to determine that the stopping criteria was

satisfied. Figs. 11–14 show that at a frequency step of Df ¼ :10 GHz the results were too low, but increasing

as Df decreased. The results for Df ¼ :02 and .01 GHz were almost coincident, and are difficult to dis-

tinguish on the figures. The conclusion is clear: it is unnecessary to use such a fine computational frequency

density as Df ¼ :01 GHz; results of a comparable quality are achieved by use of the coarser frequency

density of Df ¼ :02 GHz.

5.6. Multiple targets filled with TNT

In the remaining numerical examples the application of the two algorithms to the case of multiple mine-

like targets of different sizes and soil depths is considered. These targets are again in wet soil and filled with
TNT, using parameter values from Table 1. The buried objects chosen for this test are three rectangular

mine-like targets. Two of the targets are 5 	 4 cm and the third is 10 	 4 cm. Three mine-like targets were

examined to see if the H - and p-inversion algorithms could separate multiple scatterers and reconstruct well

the deeper object. The frequency range in this test is from 0.5 to 2.0 GHz for the H -method and 0.5 to

3 GHz for the p-method, and the frequency step is Df ¼ 0:02 GHz as suggested by the previous subsections.

The two smaller targets are centered 5 cm into the ground and the larger rectangular target is centered

10 cm deep into the ground. The horizontal centers are at �10, 0, and 10 cm. As in the first example, the

detector readings are simulated from the forward problem with the addition of r ¼ :10 multiplicative
Gaussian noise.

The real part of the corresponding function hðxÞ is displayed in Fig. 13. Using the H - and p-methods, the

reconstructed images of the real part of the coefficient are shown in Figs. 15 and 16. From these figures it

can be seen that both algorithms perform reasonably well. The locations and shapes of the objects are both

Fig. 15. Final reconstruction of Re½himagedðxÞ� after one sweep using the H -method.
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fairly accurate, with the results from the H -method being marginally better in value and notably better for

centered vertical locations and sizes. In Fig. 14, in order to provide a more quantitative comparison, the

cross-section of the real part of the image along the horizontal line where it is greatest in value (about

y ¼ 5 cm for the H -method, closer to y ¼ 4 cm for the p-method) is presented for both methods. Both

methods stopped after one sweep. The total time for the H run (two sweeps) shown in Fig. 15 was 147 and
301 s for the p run shown in Fig. 16 also at two sweeps (the second sweeps were required to satisfy the

stopping criteria).

5.7. Numerical conclusions

In the above numerical experiments both methods gave similar results using an upper bound for

frequency of 2.0 GHz for the H -method and 3 GHz for the p-method, and a Df of 0.02 GHz. For both

examples the horizontal widths and locations of the recovered images were rather accurate, while the H -

method was in general better for vertical widths and locations. For the single target example, the p-method

showed a final image that at its extreme centered real value was somewhat closer to the target value than the

H -method. However (not counting the termination sweep) the H -methods required only one sweep with an

upper bound of 2.0 GHz, while the p-method required 2 sweeps in the single target case and one sweep in
the multiple target case and with an upper bound of 2.5–3.0 GHz for fmax. This increased upper bound for

fmax not only notably increases the computational time but more significantly extends the requirement for

measurements in the frequency range from 2.0 to 3.0 GHz.

It would be informative to compare the above algorithms with more traditional ones, for example

Levenberg–Marquardt, see e.g., [1, Section 9.4.1] for an application to an inverse problem of optical to-

mography. This topic, however is outside of the scope of this paper. The authors hope to develop com-

parisons with other methods in a later work.

Fig. 16. Final reconstruction of Re½himagedðxÞ� after one sweep using the p-method.
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6. Summary

Two inverse problem methods have been proposed to recover the locations and properties (coefficient

values) of interior targets from measured or simulated backscattered boundary data where the application

problem is modeled by the Helmholtz equation. One of these, the p-method, was originally introduced in

[16], and has a applicability restriction related to the loss tangent (see Section 2.1). The other, the H -method,

which does not depend on this restriction, was introduced here for the first time allowing comparisons to be

made between the properties of the two methods. This method also has the advantage of being simpler and
easier to program than previous versions. The successful introduction of the H -method has provided new

insights as to what is of critical importance in the previously published ESM [18,19]: not only are the

treatment of incomplete boundary data and the order of the system simplified, but it is now seen that what

was previously considered to be a key step, the elimination of the unknown perturbation though differen-

tiation (in this case by frequency) is no longer required. It is this finding that extends the previous work by

dropping the requirement that the loss tangent (2.2) must be independent of the frequency.

In both methods the inverse problem required the solution of a sequence of overdetermined discretized

systems. The matrix systems depended only on frequency and changed slowly with respect to frequency.
The significant size of these problems motivated the development of a high quality preconditioning tech-

nique for the application of the preconditioned conjugate gradient method. It was found that, for the

examples of this paper, selecting one centered system for factorization as a preconditioner for every 10–12

frequencies was sufficient to give convergence on an average of 4–5 iterations. A general algorithm was

developed for switching from one preconditioner to the next, and selecting the frequency at which it would

be evaluated. The underlying factorization used the very efficient nested dissection method [12], with the

calculations generalized to complex arithmetic.

A study was made of the frequency spacing and upper frequency required of the two methods for a single
target example. It was found that a frequency spacing of .02 GHz was satisfactory for both methods. The

H -method required data only up to 2 GHz, but the p-method required measurements up to 2.5 or 3.0 GHz.

The effect of noise in the data was tested for both methods and it was found that a r ¼ 0:1 of multiplicative

Gaussian noise had little effect on the results. Applications were made to both single and multitarget cases

corresponding to targets filled with TNT in wet soil. While the calculations currently are too time con-

suming for real time evaluation, it is hoped that in a potential application to the identification of land mines

they might lead to a diagnostic type procedure to reduce the large number of false positives. The computed

results were accurate both in location and value for both methods with some differences. In comparing the
two methods we noted that the p-method was more accurate for the extreme value in the single target case,

while the H -method gave better vertical target widths and locations, required fewer frequency measure-

ments and sometimes fewer sweeps, was faster to compute, was easier to implement and was more general.
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